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Summary

Charged particle optics has traditionally been
based on the concept of midplane symmetry.
Accelerators, beamlines, and spectrometers are cften
midplane symmetric in their entirety. Departures from
midplane symmetry are usually obtained by rotating
midplane symmetric components about a longitudinal
axis.

Misalignments and magnet imperfections introduce
non migplane symmetric components into a bean line,
Vertical steering and correction of the effect of
errgrs  can  be accomplished through the celiberate
introcuction of midplane symmetry viclating components
in Dbending magnets. We have worked out the equations
of motion and derived the transfer matrix for bending
magnets with small midplane symmetry violating field
components., The scluticns are linearized in the non
midplane symmetric magnetic field components.

Introductlon
The position and direction of motion of a

particle at any point in a beam llne can be expreased
in terma of a six-compcnent vector X, where
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This vector is measured with respect to an assumed
reference trajectory. The reference trajectory is
taken to be the path of a single specific particle
whose momentum is the central design momentum of the

optical syatem. The spatial coordinates x and y
measure the transverse distance of a particle from the
reference trajectory, The compenent x 1is  in the

horizontal {bend) plane and y {3 In the vertical.
Their derivatives x' and y' are with reszpect to
distance along the reference trajectory. The
coordinate & represents the longitudinal separaticn
between an arbitrary particle and the reference
particle, when the two partlcles start at  the
peginning of the system at the same time, Finally,
there i3 the fractional momentum deviation ¢ from the
reference particle.

The ccmponents of the vector at any point in the
beam line c¢can be expressed as functions of tUthe
components of the initlal vector. If we represent
this function a3 a power series in the 3ix varlables
we get
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X, = axo + Txoxo + Uxoxoxo (2)

The elements of the matrix R are referred to as being
of first order; T is second order; U is third, etc,

Midpiane symmetry requires that some of the
matrix elements must equal zero. The first-order
matrix is then block dizgonalized so that motion in
the x and y planes are independent, The fractional
momentum deviation § affects only horizontal motion,
and £ is atfected by only x, x', and §. The columns of
the first-order transafer matrix are Known as
characteristic rays. Their nonzero components
{excluding those for &) are given special names, 8o
that

(x|x ) = ¢, (8) (x'[x ) = cpis) (3

{xfx!) = a (3) (x'[x2) = s,(s)

(x]&) = d.(s} (x'{é} = d}(s)
(ylyy) = e e tly,) = e is)
(ylyy) = s,(e) (rlyy) = sy (s)

For a second-, third-, or higher-order matrix
element to be nonzero, the vertical coordinates must
appear an even number of times in its notgtion. Thus
the second-order matrix elements (xlxc). (xjyoyé).

(xono). (Y|xoyo), and (ylyou) may be nonzero. The

5 £ = '
slements (x]xoyo). (x|yoo). and (ylyoyo) are required

by midplane symmetry to be 2ero.

We now consider small violations of midplane
symmerry. The symmetry violating magnetlc fields are
considered to be error fields, so that the reference
trajectory remains unchanged. Now, however, there is
a vertically bending magnetic field component, so that
a charged particle with the reference momentum which
initially follows the refersnce trajectory cannot
continue to fellow the reference trajectory.
Equation (3) then acquires a zero'th order term and
becomes
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The =zero'th orger term X1S is the distance by which
the particle initially on the reference irajectory
deviates from the reference trajectory at the magnet
exit.



There is also now coupilng between planes so that
many matrlx elements which were zero in the case of
midplane symmetry, acquire nonzerc values.
Specifically, the wupper left of R {3 now a complete
four-by-four matrix with no Dblock diagonalization.
Second-order terms such  as (xﬁxoyo), (x\yoa}, and

(yiyoyé) acquire nonzero values. The only remaining
zero values result from the fact that, in a passive
magnetic system, the transverse coordinates and § are
not affected by %, and the transverse coordinates ana
L do not affect 6.

Magnetic Fleld Expansion

We now speclialize tc the case of a bending magnet
where the field strength 1is a functign of only the
transverse ccoordinates. By Maxwell's equations, the
magnetic field is completely specifled if its
components are given 1in the magnetic midplane.
Midplane aymmetLry requires that the horizontal
magnetic fleld (Ex) be zero on the magnetic midplane.

The vertical fleld component (Ey) is then given by

B (x,0,5) = B (1 - nhx ¢ h°x° + ...) (53

Here h 13 the curvature of the reference trajectory,
equal to the reciprocal of the radius of curvature.

Violaticon of wmidplane symmetry allows nonzeroc
values of Bx on the magnetic midplane, The horizontal

field component can then be given an expansion similar
to that of the vertical component.

L22
Bx(x,o,s) = Bo(vR n‘hx + g'n'x vl (6)

Here the primes do not indicate derivatives, but
rather that n' and g' are different quantities from n
and %, To avold confusion we will write the
differential equations of motion without use of primes
to indicate differentiation.

Solving Maxwell's equations in & curvilinear
coordinate system, the complete magnetlc field
expansions become

2 2
= - v - a1
BX Bo[VR hn'x hny + h p'x (7
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Zero'th and First Order Solution

The first order equations of motion now become

2
X L (1-minPx = h¥(v - n')y + né (8)
2 R
ds
dzy + nh2y = h2(2v -n*')x + v_h - v_ nhé
2 R R R

ds

There are (wo obvious differences from the midplane
aymmetric case. The first is the mixing of planes,
where there 1s a term in y on the right side of the
eguaticn for x and visa versa. The second is the
effect of the vertlcally bending fileld on the right
side of the seccnd equation. This vertically Dbending
field produces a trajectory shift and an assoclated
vertical dispersion.

AL this polnt, we are faced with a choice of two
approaches. The 1two equatlons can be solved exactly
by finding eigenvectors in the transverse coordinates
where the equations separate. Alternatively, we can
consider the midplane symmetry vioclating vterms to be
amall and solve for their effect as a perturbation of
the midplane symmetric solution.

We choose the latter approach since midplane
symmetry vlolating magnetic fleld components are
invariably significantiy smaller than the midplane
symmetry respecting components, The elgenvector
appreoach 1s also noticeably more complicated in first
order and prohibitive in second order.

A First order perturbative solution using Green's
functions yields:

-e,
Y8 * YR Tmn (9)
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The equations of motion expanded to second order

are
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Second-Order Terms
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Second-order non-midplane-symmetric DALTLX
elements can arise from three different sources:
1) Second-order non-midplane-symmetric terms coupling

tc midplane symmetrie first-order matrix elements

2) Second-order midplane-symmetric terms coupling to
non-midplane-symmetric flest—-order matrix elements.
1) First-order non-midplane-symmetric terms coupling

to midplane symmetric second-order matrix elements.

When segond-order terms are inecluded, the shift in the
central trajectory due to the vertically bending field
causes g change in the Clrst-order terms.

Space limitations preohiblt a 1listing of the
non-mlidplane-symmetric second~order matrix elements,
or of the alterations t¢ the first-order terms. They
involve three times as many terms as the
midplane-symmetric second-order terma. The effects of
the non-midplane-aymmetrlc magnetic field component?
have been éncluded in the computer programs TRANSPORT
and TURTLE™.
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